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Lock-on characteristics of a cavity shear layer
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Abstract

This investigation focuses on defining the lock-on regions of a cavity shear layer subject to local periodic excitations.

A circular cylinder of small diameter (d ¼ 4mm), located very close to the upstream edge of cavity, is used to generate

the local periodic excitations in the form of oscillatory rotation about its center with various angular amplitudes (Dy)
and frequencies (fe). All the experiments were conducted in a recirculating water channel at three different Reynolds

numbers that are based on the momentum thickness at the upstream edge of cavity (Rey0=152, 216 and 278). The LDV

system and the laser-sheet technique are employed to perform the quantitative velocity measurements and the

qualitative flow visualization, respectively. For cavity flows at three Reynolds numbers studied, the resonant lock-on is

found to be the primary lock-on region within the range of frequency ratio (fe=f0 ¼ 0:2822:0). Here f0 denotes the

natural instability frequency of an unexcited cavity shear layer. The frequency bandwidth of resonant lock-on region

does increase with increasing excitation amplitudes (Dy). While the excitation amplitudes are smaller than 5� (Dyp5�),

the resonant lock-on region, at Reynolds numbers 216 and 278, distributes asymmetrically about fe=f0 ¼ 1:0 and biases

to the high frequency (or large fe=f0) side. However, the sidewise expansion of resonant lock-on region is enlarged and

the degree of asymmetric distribution is alleviated at large excitation amplitudes (Dy > 5�). The amount of sidewise

expansion of the resonant lock-on region biased toward the high-frequency side is more significant at the lowest

Reynolds number (152) than those at two higher Reynolds numbers (216 and 278). Besides, there exists a sub-harmonic

lock-on region only at the lowest Reynolds number 152. The existence of a sub-harmonic lock-on region clearly reveals

that the differential equation governing the self-excited oscillation within a cavity contains the quadratic nonlinear

term. Further, at the lowest Reynolds number (152), the sidewise expansion of the sub-harmonic lock-on region is much

narrower than that of the resonant lock-on region.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decades, cavity flows in various engineering applications have received great attention due to their

practical importance. For high-speed applications, the flows over the surface cut outs of aircraft may produce acute

noise; serious buffeting (Heller and Bliss, 1975) and cause significant increase of the cavity drag (Gharib and Roshko,

1987). On the other hand, the vibration of a hydraulic gate slot and the heat transport efficiency over a powered

electronic chip on a printed circuit board (Ghaddar et al., 1986) represent some important low-speed applications of

cavity flows.

Flow separation takes place at the upstream edge of the cavity because of the geometric discontinuity, and a thin free

shear layer forms thereafter. The separated thin shear layer becomes unstable and grows exponentially in the

streamwise direction. Then, the unstable shear layer impinges on the downstream edge of cavity. Immediately after the

impingement, a pressure fluctuation created near the impinging surface reflects toward the upstream edge of cavity at
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the speed of sound, completing the feedback loop. As the flow reaches certain critical conditions, both the selective

amplification characteristics of the cavity shear layer and the upstream propagating feedback provide necessary

conditions for the oscillations within a cavity to be self-excited. This oscillation exhibits a sharp and strong spectral

peak at a frequency corresponding to the shear layer instability (Rockwell and Naudascher, 1978; Gharib and Roshko,

1987). Thus, a large pressure fluctuation is sustained within the cavity and is responsible for the fatigue damage of the

components around or inside a cavity (Ethembabaoglu, 1973).

In an attempt to understand the key mechanism and resolve these undesirable problems, the cavity-related

investigations had been studied intensively during the past (Rockwell and Naudascher, 1978). Characteristics of the

self-excited oscillation within a cavity depend upon several important factors. First of all, the flow conditions at the

upstream edge play critical roles on the oscillating characteristics across a cavity. For instance, the magnitude of an

incoming velocity, momentum thickness at the upstream edge and the width/depth ratio of a cavity (Knisely and

Rockwell, 1982; Gharib, 1987; DeMetz and Farabee, 1977) determine the oscillating mode and the amplitude within the

cavity. Second, the vertical offset at the downstream edge of a cavity also strongly affects the oscillating amplitude

(Rockwell and Knisely, 1979). For example, as the downstream edge of the cavity is replaced by a ramp, the amplitude

of fluctuating pressure inside the cavity and the aero-acoustic noise can be reduced effectively (Ethembabaoglu, 1973;

Franke and Carr, 1975). Further, based upon the results of Kuo and Huang (2001), the bottom slope (either positive or

negative) of a cavity can also change the oscillating characteristics of the cavity shear layer to different extents. And, the

negative bottom slope is found to have better performance than the positive one to reduce the oscillating amplitude.

Besides, the oscillating amplitude can be greatly enlarged as the excitation frequency lies within the selective

frequency range of the shear layer instability, provided that the excitation amplitude is larger than a threshold value

(Gharib, 1987). Recently, an investigation on the self-excited oscillations within a cavity in the presence of a horizontal

cover plate has been made in an application to the lower reservoir of a pumped-storage hydroelectric power plant

(Huang, 1998 and Kuo et al., 2000). The presence of a horizontal cover plate in the vicinity of a cavity greatly enhances

the oscillating amplitude of the unstable cavity shear layer. Furthermore, the leading-edge bluntness of a cover plate

ARTICLE IN PRESS

Nomenclature

A excitation amplitude

D cavity depth, 3.5 cm

f0 natural instability frequency of cavity shear layer

fe excitation frequency

L cavity width, 7.0 cm

PSD power spectral density

Rey0 Reynolds number based on momentum thickness at x ¼ 0 ðe:g:; U0y0=nÞ
S spanwise dimension

Sty0 Strouhal number based on momentum thickness at x ¼ 0 ðe:g:; f0y0=U0Þ
StL Strouhal number based on the cavity width, f0L=U0

Uc convection speed of the unstable shear layer

%umin minimum velocities across the shear layer, measured at x=L ¼ 0:5
%umax maximum velocities across the shear layer, measured at x=L ¼ 0:5
U0 uniform inflow

%uðL=2; yÞ cross-flow profile of mean streamwise velocity, measured at x ¼ L=2
%uðx; yÞ mean streamwise velocity

*u streamwise velocity fluctuation

@ %u=@y velocity gradient across the shear layer

x; y; z the streamwise, transverse and spanwise coordinate system

yþ yþ ¼ ðy � y0:5Þ=yðxÞ
U� ð %uðL=2; yÞ � %uminÞ=ð %umax � %uminÞ
y0:5 the elevation where U� ¼ 1=2

Greek letters

yðxÞ local momentum thickness along the shear layer

y0 momentum thickness at the upstream edge of the cavity

l wavelength of the unstable shear layer
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also changes the oscillating mode and/or the oscillating amplitude within cavity (Kuo and Huang, 2000). In a

hydroelectric power plant, the flow usually possesses certain frequency components imposed on the mean flow. So far,

the effect of periodic excitations on the oscillating amplitude within a cavity (or gate slot) has received little attention,

and the related phenomena still remain unknown. This motivates the present investigation on the lock-on

characteristics of a cavity shear layer subject to periodic excitations. Practically, it is difficult to generate a quasi-

two-dimensional pulsating flow in a test-section. Thus, a local excitation technique is applied at the most sensitive

region of the cavity shear layer so as to study the response of an excited cavity shear layer. In this study, a simplified

two-dimensional rectangular cavity model (or gate slot) is employed. A small circular cylinder, located very near the

upstream edge of cavity (Fig. 1), generates an oscillatory rotation about its center at various angular amplitudes (Dy)
and excitation frequencies (fe). This local excitation serves as the only source of the periodic excitation.

This paper is organized in the following manner. Section 2 describes the geometry of the cavity model, the definition

of the coordinate system, the flow conditions, the measurement techniques and related details of the data acquisition

system. In Section 3, the mean and the dynamic characteristics of an unexcited cavity shear layer are illustrated first as a

reference case. This is followed by the response characteristics of an excited shear layer and the comparison with those

of an unexcited one. Subsequently, the results subject to various excitation amplitudes and at different Reynolds

numbers are discussed. Finally, possible mechanisms responsible for these responses are outlined based on a nonlinear

theory describing the self-excited oscillation subject to local periodic excitations. The objective is to reveal the lock-on

characteristics of an excited cavity shear layer.

2. Experimental set-ups

2.1. Setups of cavity model and coordinate system

As shown in Fig. 1, the width/depth ratio of the two-dimensional rectangular cavity model is L=D ¼ 2: The cavity

model is located downstream of an accelerating ramp whose profile is machined precisely to a fifth-order polynomial by

the CNC machine. The profile of this accelerating ramp is designed to maintain a uniform in-flow condition in the outer

flow regime and an attached boundary-layer flow at the upstream edge of cavity. Further, the ‘‘surface polishing’’

process employs the slurry as a lubricant to obtain a lustrous surface. It is intended to minimize the influence of surface

roughness on the boundary-layer structure, especially at the upstream edge of cavity. The ramp profile merges smoothly
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Fig. 1. Experimental set-up showing the coordinate system of cavity model, the enlarged view of small cylinder and some important

parameters.
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into a horizontal part located immediately upstream of the cavity. The two-dimensional cavity model has an aspect

ratio S=D ¼ 11:2 and rests on a full-span two-dimensional horizontal platform placed 5 cm above the bottom of the

test-section. The flow rate between the platform and the channel bottom is regulated carefully, so that the uniform in-

flow has a zero incidence angle relative to the leading edge of the accelerating ramp.

As sketched in Fig. 1, the origin of the coordinate system is located at the upstream edge of cavity. The directions

along and upward normal to the incoming flow define the positive x and y directions, respectively. And, z ¼ 0 defines

the plane at mid-span where the flow visualization and the extensive velocity measurements are performed. During flow

visualization, fluorescent dye is fed by gravity through a constant but low-head reservoir. In such a design, the dye can

be released naturally and steadily from a tiny hole of 0.5mm diameter situated about 15y0 upstream of the origin (e.g.,

at x ¼ 0 or at the upstream edge of cavity). The laser beam, from a continuous wave laser, passes a collimator and

finally reaches the planar-cylindrical lens where the beam is converted into a laser sheet. The thickness of laser sheet is

about 0.6–0.8mm. Then, the self-excited oscillatory flow pattern can be illuminated and visualized by casting the laser

light sheet on the plane at mid-span. A CCD camera, having 1/30 s shutter speed, is employed to continuously capture

the images of the time-dependent flow pattern.

In the present study, a small circular cylinder has a 4mm diameter and is employed to generate the local periodic

excitations. The cylinder length is about 102% of the whole span and is rigidly supported on both sides of the

supporting frame. The small cylinder is located very close to the upstream edge (or at x=L ¼ 0:03 and y=D ¼ �0:06) of
the cavity to ensure the generation of a single-frequency excitation. The periodic excitations are in the form of

oscillatory rotation about the center of the small cylinder. Mathematically, the motion of this rotating cylinder can be

expressed as yðtÞ ¼ Dy sinð2pfetÞ: In the present study, the angular excitation amplitude Dy is kept constant while the

excitation frequency changes from fe=f0 ¼ 0:28 to 2.0. In addition, different angular amplitudes (Dy) are selected to

study the effect of excitation amplitude. Under this arrangement, the top surface of the small cylinder is tangent to the

low-speed side of the cavity shear layer. The oscillatory rotation of the small cylinder is driven from one end by a

servomotor, via which the excitation amplitudes and frequencies can be controlled precisely, with minimum attainable

excitation amplitude around 70.36�. A typical trace of the periodic excitation, depicted in Fig. 2, clearly exhibits not

only good periodicity but also stable amplitude from cycle to cycle, with negligible noise. Further, the lock-on and the

non-lock-on regimes are identified at three different Reynolds numbers.

2.2. Experimental conditions

All experiments were performed in a recirculating water channel. The test-section has a cross-section of 40 cm� 40 cm

and is 300 cm long. At the upstream edge (or x ¼ 0), the mean streamwise velocity profiles %uðx; yÞ; measured at different

spanwise locations, resemble the Blasius boundary-layer profile within 96.3% of the whole span, and have shape factors

ARTICLE IN PRESS

1.1

1.2

1.3

1.4

1.5

V
ol

ta
ge

0 1 2 3 4

Time (s)

Fig. 2. Typical time signal of the rotary oscillation of the small cylinder.
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around 2.5670.21. The maximum deviation of %uðx; yÞ is about 1.62% from the Blasius solution. Near the upstream

edge of the cavity (e.g., x ¼ 0mm; y¼0:05mm), a hydrogen-bubble wire is placed horizontally along the spanwise

direction to qualitatively visualize the top-view flow structure across the cavity. The top-view flow structure is observed

as a smooth surface across the cavity mouth up to x=L ¼ 0:8 (namely, a quasi-two-dimensional laminar shear flow).

Inside the cavity, a large-scale recirculation flow pattern represents the principal flow structure that remains quasi-two-

dimensional in nature.

For all the experiments, the free water surface is maintained at 25 cm (or 307y0) above the cavity. Before and after

installing the accelerating ramp with the cavity model into the test-section, all the velocity spectra, measured at various

streamwise locations and across the height of test-section, show only wide-band characteristics at the noise level without

any spectral peak. These preliminary tests further ensure no detectable oscillation induced by the free water surface at

these Reynolds numbers.

In the present study, we examine the spanwise straightness of the small cylinder and the two-dimensional nature of

the flow by several indirect methods. The straight small cylinder is made of Tungsten carbide that has high rigidity

(E ¼ 630GPa) and high yield strength (2400MPa). From simple beam theory, the maximum static deflection is

predicted to be around 1.65 mm at mid-span due to its own weight. Theoretically, there will be no velocity fluctuation in

the radial direction while the cylinder, rotating continuously in one direction in the quiescent fluid, is perfectly straight.

On the other hand, any deflection of the rotating cylinder can induce periodic (or nearly periodic) velocity fluctuations

in the radial direction in the near field because the deflected rotating cylinder whirls in a circular orbital path around the

supporting axis. During the test, the velocity fluctuations in the radial direction are taken by the LDA system at

the half-span section in the vicinity of rotating cylinder, while the small cylinder rotates continuously in one direction at

the highest rate (3.0Hz) in quiescent liquid. After several tests, no discernible spectral peak was found in the velocity

spectra. This implies that there are no detectable periodic radial velocity fluctuations induced by the deflection of the

small rotating cylinder. Further, the mean streamwise velocity profiles behind the rotating cylinder are also examined at

several locations within 96.3% of the whole span. Similar velocity profiles are found with maximum deviation of 1.54%

of U0: These preliminary examinations further ensure that, by all experimental means we can attain, the small rotating

cylinder is straight and the flow behind the rotating cylinder is two-dimensional in nature.

Concerning the natural frequency of the small cylinder, a cantilevered cylinder having the same material and the same

diameter but only half the length was tested in quiescent fluid. The natural frequency of the small cylinder has found to

be around 70Hz, which is about 14.3% lower than the theoretical value at the same supporting condition. The viscous

damping and the added mass effects in the quiescent fluid are the primary cause for this underestimated value. In

theory, the natural frequency for the fixed–fixed support condition is about 1.7 times (around 138Hz) that of the fixed–

free supporting case for the same length. Thus, the natural frequency of the small cylinder in the present experiment is

far away from the natural instability frequency (f0) of the cavity shear layer and no contamination will be introduced on

the response frequency of the excited shear layer.

2.3. Quantitative velocity measurements

For the experimental conditions studied herein, the preliminary tests mentioned in the previous section ensure the

quasi-two-dimensional flow structure across the cavity. Therefore, velocity measurements performed by a laser Doppler

velocimetry (LDV) system on the plane at mid-span (at z ¼ 0) can truly reveal the typical unsteady flow structures

across the cavity. The LDV system, operated in backscatter mode, consists of a continuous wave laser source, a Bragg

cell for frequency shifting, and an integrated transmitting and receiving module. A correlation-based signal processor is

employed to validate the data within each Doppler burst. It is the advantage of this nonintrusive technique that no

probe interference is introduced during the measurements, especially within the most sensitive region of the cavity shear

layer. A traversing table of 0.01mm accuracy controls the measuring locations within the flow field. Furthermore, the

small size of the seeding particles (TiO2, 8mm in averaged diameter) in water flow gives a responding time around 6.2 ms.
Relative to the time scale in water flow, both the sufficiently fast response time (6.2 ms) and the small Stokes number

(0.001) of the seeding particles ensure that the particle motion will follow the fluid motion naturally without slip. In

addition, proper seeding concentration in the water gives continuous velocity time signals acquired by the LDV system.

Within the flow region, the validated data rate is around 1000–2000 s�1. Before entering the data acquisition system,

all the time signals of the validated velocity are fed into a low-pass filter having 100 kHz bandwidth to avoid aliasing. A

12-bit A/D converter whose maximum sampling rate is 330 kHz then digitizes the velocity signals. To obtain the mean

velocity within the flow field, a sampling period including 80 s (or 80 cycles) indeed provides the statistically averaged

value. The relative uncertainty of uniformity of the incoming velocity was estimated to be about 0.53%U0: For the

oscillatory flow measurements, the excitation frequency ratio (fe=f0) ranges between 0.28 and 2.0. The sampling

frequency of 100Hz and the sampling period of 40.96 s (or 40 cycles) give a frequency resolution of 0.024Hz and
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a cut-off frequency of 50Hz. Furthermore, measurements of the velocity fluctuation *u are performed on the high-speed

side of cavity shear layer where the local streamwise velocity reaches 90%U0: Two different FFT algorithms are

employed to calculate the power spectral density functions in this study. The first one is the decimation-in-time FFT

algorithm in which the total number of sampled data is a power of 2. The second approach is the Turkey–Cooley

algorithm that calculates the power spectral density function when the total number of the sampled data-point is any

integer N: The spectra calculated by these two approaches, both with a Hanning window, give similar spectral density

functions and thus the same lock-on and non-lock-on regions.

At each measuring location, an average of 10 sample PSD functions yields the ensemble-averaged PSD by which the

lock-on and non-lock-on regions are defined. Since we only have finite (ten) measurements, the analysis of t-distribution

can be used to quantify the difference between the finite mean and the population mean. Based on this method, the

deviation between the finite mean and the population mean is calculated to be about 0:7Df ; where Df is the frequency

resolution of each estimated spectrum. Therefore, the responding frequency of each spectral peak can be correctly

identified. For further validation of this error estimation, examinations of all ten power spectral densities show that all

the responding frequencies indeed fall within the predicted range.

3. Results and discussion

3.1. Mean and dynamic characteristics of unexcited cavity shear layer

The streamwise velocity profiles %uðL=2; yÞ are measured across the shear layer at x=L ¼ 0:5 for different flow

conditions. When the small cylinder is stationary (fe ¼ 0), the velocity profile %uðL=2; yÞ across the cavity shear layer,

measured at x=L ¼ 0:5; serves as a reference case. In Fig. 3, the streamwise velocity profile across the cavity shear layer

is nondimensionalized as U� and the ordinate is yþ: Definitions of the symbols %umax; %umin; yðxÞ and y0:5 are given in

Nomenclature. The normalized velocity profiles U�; measured at x=L ¼ 0:5; are shown in Fig. 3 only for some

representative cases. For the simple cavity without a small cylinder (triangular symbols), the normalized velocity profile

U� distributes uniformly in the region far away from the cavity (e.g., yþ
b0). Across yþ ¼ 0; there is a significant

velocity gradient ð@ %u=@yÞ; signifying the approximate location of the unstable cavity shear layer. Inside the cavity, the

magnitude of U� reduces to zero due to very slow recirculation motion inside the cavity. When a stationary small

cylinder is located very near the upstream edge of cavity (solid circle), the two velocity profiles evidently collapse onto a

single curve. A similar U� distribution is also observed for the case of an oscillatory rotating cylinder at relatively large

ARTICLE IN PRESS

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

U*

-15

-10

-5

0

5

10

15

20

25

y+

tanh (y+)
stationary cylinder
without cylinder
   = 10 deg. fe/fo =2.0∆θ

Fig. 3. Nondimensional cross-flow velocity profiles U� at different flow conditions. The velocity profiles are measured at x=L ¼ 0:5:

C.-H. Kuo, W.I. Jeng / Journal of Fluids and Structures 18 (2003) 715–728720



amplitude and high excitation frequency (open circles). In Fig. 3, all the velocity distributions U� closely fit onto the

theoretical tanh-velocity profile (solid line). This reveals that neither placing a stationary small cylinder nor an

oscillatory cylinder will cause the mean velocity profiles U� to deviate away from the theoretical thin shear layer (tanh-

velocity) profile.

Besides, snapshots of the unstable shear layer across the cavity are depicted in Figs. 4(a) and (b) for the cases of a

simple cavity without and with a stationary small cylinder. Typical velocity spectra acquired from the velocity

fluctuation *u near the shear layer are also shown in Figs. 4(c) and (d). Both the power spectral density functions peak

well above the noise level, clearly indicating the existence of self-excited oscillation within the cavity. In both cases, the

responding peak frequencies are very close to each other (f0 ¼ 1:12Hz) and their corresponding Strouhal numbers Sty0 ;
based on these peak frequencies, equal 0.0168. These values are very close to the theoretical value (0.017) based upon

the velocity profile of thin shear layer (Blake, 1980). On the other hand, the wavelengths of both unstable shear layers

are estimated about l=L ¼ 0:58 from flow visualization [Figs. 4(a) and (b)]. By rearranging the parameter StL as the

ratio ðL=lÞðUc=U0Þ; the wavelengths for both cases are calculated around l=L ¼ 0:60 based on the measured convection

velocity (UcE0:52U0).

According to the foregoing results of wavelength and responding frequency in both cases, it is clear that installation

of a small circular cylinder very near the upstream edge of cavity neither influences the instability nature of the unstable

shear layer nor does the mean velocity profile U�: Namely, the instability characteristics of cavity shear layers, either

unexcited or excited, can still be predicted by linear stability theory based on the tanh velocity profile of thin shear

layers.
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3.2. Response characteristics of an excited shear layer

As defined in the literature (Hall and Griffin, 1993), the flow characteristic is categorized as ‘‘non-lock-on’’ when only

the natural frequency component (f0) of shear layer instability becomes dominant. On the other hand, the ‘‘lock-on’’

characteristic is defined as long as the spectral component, centered at the excitation frequency (fe), becomes dominant

and completely replaces the natural component (f0) of shear layer instability. In-between the adjacent lock-on and non-

lock-on regions, the velocity spectra exhibit two spectral peaks of comparable magnitude. Their corresponding peak

frequencies are equal to the excitation frequency (fe) and the natural instability frequency (f0) of the unstable shear

layer, respectively. This kind of flow is defined as the ‘‘boundary region’’. The boundary region signals the transition of

an excited shear layer between the natural mode (or non-lock-on mode) and the lock-on mode of oscillation within the

cavity.

When the cavity shear layer is perturbed at the smallest excitation amplitude (Dy ¼ 72�), the power spectral density

Suðf Þmeasured at x=L ¼ 0:6 on the high-speed side of the shear layer are illustrated in Fig. 5 in a sequence of increasing

frequency ratio (fe=f0 ¼ 0:2822:0); f0 represents the natural mode of shear layer instability within a cavity, and fe

denotes the excitation component. The Reynolds number is 152 in this case.

As the frequency ratio ranges between 0.28 and 0.4, there exist several spectral peaks at frequencies fe; 2fe and f0 in the

power spectral density Suðf Þ of Fig. 5, indicating the boundary characteristics of the excited cavity shear layer. At

fe=f0 ¼ 0:50; the sharp spectral peak at fe overwhelms the natural component at f0: This corresponds to the lock-on

characteristic of an excited shear layer, responding at one half of the natural instability frequency (f0) of the cavity shear

layer. Thus, this lock-on feature is termed as the ‘‘sub-harmonic lock-on’’ region hereafter.

The lock-on feature is replaced by boundary characteristics when the frequency ratio becomes fe=f0 ¼ 0:55: However,

starting from fe=f0 ¼ 0:6 and up to fe=f0 ¼ 1:41; the spectral peak of excitation component (fe) completely dominates

within the cavity. This feature denotes another lock-on band of the excited cavity shear layer. Since this frequency band
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Fig. 5. Power spectral density Suðf Þ of the velocity fluctuation *u; measured on the high-speed side of cavity shear layer, for various

excitation frequencies ratio (fe=f0). Note that the oscillating amplitude is Dy ¼ 72�: The units for Suðf Þ are (cm2/s). The Reynolds

number, based on the momentum thickness y0; equals 152.
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is centered at the nature frequency of shear layer instability, it is referred as the ‘‘resonant lock-on’’ region hereafter.

Beyond the frequency ratio fe=f0 ¼ 1:50; the spectral peak at the excitation frequency (fe) diminishes abruptly. In this

case, the spectral peak of the natural component of shear layer instability becomes dominant. The power spectral

density Suðf Þ of this kind is categorized as a characteristic of the ‘‘non-lock-on’’ regions.

3.3. Effect of excitation amplitudes on lock-on bands

Four different excitation amplitudes (Dy ¼ 2�; 5�, 8�, 10�) of periodic excitations are selected to define the

boundaries of the lock-on regions, while the frequency ratio ranges from fe=f0 ¼ 0:28 to 2.0. When the excitation

amplitude equals Dy ¼ 75�; the power spectral density function of velocity fluctuations, measured at x=L ¼ 0:6; are
shown in Fig. 6 in a sequence of increasing frequency ratio.

When the excitation frequency ratio lies between 0.28 and 0.4 in Fig. 6, several spectral peaks are present in the power

spectral density functions. Here the natural component of shear layer instability (f0) is largely dominant. This clearly

corresponds to the non-lock-on characteristics of the cavity shear layer. On the contrary, at fe=f0 ¼ 0:5; the sharp

spectral peak centered at fe becomes dominant again, indicating the existence of a sub-harmonic lock-on region. As the

frequency ratio increases slightly to fe=f0 ¼ 0:55; two spectral peaks of comparable magnitude are observed in the power

spectral density function Suðf Þ: This feature clearly illustrates the boundary characteristic between two adjacent lock-on

regions.

As the frequency ratio reaches fe=f0 ¼ 0:6; a very sharp spectral peak reappears at the excitation frequency, and no

other spectral peaks are found. The power spectral density of this kind clearly reveals the lock-on characteristic at this

excitation frequency. When the frequency ratio lies between fe=f0 ¼ 0:6 and 1.50, the dominance of spectral peak still
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Fig. 6. Power spectral density Suðf Þ of the velocity fluctuation *u; measured on the high-speed side of cavity shear layer, for various

excitation frequencies ratio (fe=f0). Note that the oscillating amplitude is Dy ¼ 75�: The units for Suðf Þ are (cm2/s). The Reynolds

number, based on the momentum thickness y0; equals 152.
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appears at the excitation frequency (fe), indicating a lock-on region. This response characteristic corresponds to the

resonant lock-on region.

When the Reynolds number equals 152, the lock-on regions of an excited shear layer within cavity are summarized in

Fig. 7 as functions of excitation amplitudes and excitation frequencies. It is clear that two lock-on regions are found

within the frequency range fe=f0 ¼ 0:28–2.0 for Dyp75�: One lock-on region is centered at the sub-harmonic

frequency (f0=2), and the other is centered at the fundamental frequency (f0) of shear layer instability in the cavity. A

boundary region separates the sub-harmonic and the resonant lock-on regions. The bandwidth of sub-harmonic lock-

on region is much narrower than that of the resonant lock-on region. It is also found that the resonant lock-on region

expands significantly toward the high-frequency side as the excitation amplitude enlarges. When the excitation

amplitudes exceed Dy ¼ 78�; the sub-harmonic and the resonant lock-on regions merge into each other, leading to

only one single lock-on region within the same frequency range (fe=f0 ¼ 0:2822:0).
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3.4. Effect of Reynolds number on lock-on bands

Fig. 8 depicts the map defining the lock-on, boundary and non-lock-on regions at a higher Reynolds number (216). It

is clear that within the same range of frequency ratio (fe=f0 ¼ 0:2822:0), the sub-harmonic lock-on region disappears at

this Reynolds number. Moreover, there is only one single lock-on region, known as the resonant lock-on region. The

frequency bandwidth of resonant lock-on region is much narrower than that in Fig. 7. Likewise, the frequency

bandwidth of resonant lock-on region depends strongly upon the excitation amplitudes. Namely, the bandwidth of the

resonant lock-on region broadens with increasing excitation amplitudes. A remarkable finding is that the resonant lock-

on band distributes asymmetrically about the frequency ratio fe=f0 ¼ 1:0 while the excitation amplitude is small.

Namely, it expands more significantly toward the high-frequency side than to the low frequency direction. As the

excitation amplitude increases beyond Dy ¼ 710�; the degree of asymmetric distribution about fe=f0 ¼ 1:0 gradually

diminishes.
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Fig. 10. Direct comparison of the resonant lock-on regions of an excited cavity shear layer at three different Reynolds numbers.
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When the Reynolds number increases further up to 278, the lock-on regions are defined in Fig. 9 as functions of

excitation frequencies and excitation amplitudes. Similarly to the results shown in Fig. 8, the sub-harmonic lock-on

region is missing within the same range of excitation frequency ratio (fe=f0 ¼ 0:2822:0). The bandwidths of resonant

lock-on region are about the same as that of Fig. 8 at small excitation amplitudes. However, the bandwidths of the lock-

on region shrink slightly at large excitation amplitudes. Likewise, the asymmetric distribution of resonant lock-on

region is reduced when the excitation amplitudes (Dy) are greater than 8�. To examine the Reynolds number effect, the

lock-on regions for three different Reynolds numbers are plotted in Fig. 10 for direct comparison. It is clear that the

resonant lock-on region is broadest at the lowest Reynolds number (152) for which the self-excited oscillation within

cavity is at the onset stage. The sub-harmonic lock-on region exists only at the lowest Reynolds number. The resonant

lock-on region displays a significantly reduced broadness when the Reynolds number increases from 152 to 216.

However, the frequency bandwidth of the resonant lock-on region does not change significantly for two higher

Reynolds numbers (216 and 278).

3.5. Possible mechanism that affects lock-on region and bandwidth

In the case of no external excitation, the unstable cavity shear layer exhibits a self-excited oscillation at the natural

instability frequency (f0). The characteristics of self-excited oscillation within cavity can be described by nonlinear

ordinary differential equations with quadratic and/or cubic nonlinear terms (Nayfeh and Mook, 1979). In the case of

the lowest Reynolds number (152), the existence of a sub-harmonic lock-on region clearly reveals that the differential

equation governing the self-excited oscillation in the cavity flows contains the quadratic nonlinear term.

When the excitation frequency (fe) lies in the neighborhood of the natural instability frequency (f0) of cavity shear

layer, the excited shear layer will respond at the excitation frequency. This flow characteristic clearly belongs to the

resonant lock-on category. Further, the sidewise expansion of resonant lock-on region depends strongly upon

the excitation amplitudes (Nayfeh and Mook, 1979). Namely, the larger the excitation amplitudes are, the wider the

resonant lock-on band. Also, from theory, the resonant lock-on region will distribute symmetrically about fe=f0 ¼ 1:0
when the excitation energy remains constant.

For the cases of nonresonant excitations, the excitation frequencies (fe) are far away from the natural frequency (f0),

and the sub-harmonic and super-harmonic frequencies f0=n and nf0; where n is any positive integer. In this case, the

external excitation may change the system characteristics appreciably from a positive damping to a negative value if the

excitation amplitude exceeds a certain threshold value. This change is primarily caused by the nonlinear interaction

between the excitation component (fe) and the natural instability component (f0) of the cavity shear layer. In case of a

positive damping, the excitation component is damped out. Thus, only the natural component of the shear layer

instability exists and dominates the flow field. This flow characteristic is associated with a non-lock-on feature. Further

increase of the excitation amplitude beyond a threshold value will change the system damping to a negative value and

cause the natural instability component (f0) of the cavity shear layer to decay completely. This phenomenon is called

‘‘quenching’’. In this case, the responding frequency is the same as that of the excitation frequency, and the flow

characteristic is associated with a lock-on feature.

In the present study, the existence of a resonant lock-on region is caused by the primary resonance when the

excitation frequency lies in the neighborhood of fe=f0 ¼ 1:0: For all the Reynolds numbers studied herein, the resonant

lock-on regions show different amounts of sidewise expansion, depending upon the excitation amplitudes (Figs. 7–9).

However, in the resonant lock-on region, where the excitation amplitudes are large and the excitation frequencies are

far away from the natural instability frequency of the cavity shear layer, the quenching phenomenon may play an

important role and is primarily responsible for extra sidewise expansion of the resonant lock-on region.

At the Reynolds numbers 216 and 278, the asymmetric distribution of the resonant lock-on region is more significant

at small excitation amplitudes (Dyp5�) than that at large ones (Dy > 5�). The reason for this asymmetric distribution is

discussed in what follows. In the present study, the angular displacement (Dy) of periodic excitation is kept constant

while the excitation frequency (fe) changes. Given an angular amplitude (Dy), the excitation amplitude of the tangential

velocity generated by a small rotating cylinder equals 2pfeDy and is linearly proportional to the excitation frequency.

Even at small excitation amplitudes (Dyp5�), the tangential velocity excitations will be large at high excitation

frequencies. Thus, the asymmetric distribution of resonant lock-on region, depicted in Figs. 7–8, toward the high-

frequency end is primarily due to the unequal tangential velocity excitations on either side of fe=f0 ¼ 1:0: However, at

large excitation amplitudes (Dy > 5�), the quenching mechanism provides an additional opportunity for the excited

shear layer to be locked-on by the external excitations at low excitation frequencies. Thus, the degree of asymmetric

distribution of the resonant lock-on region is diminished at large excitation amplitudes. In other words, at large

excitation amplitudes, the primary resonance and/or the quenching phenomenon are the two main mechanisms that
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cause significant sidewise expansion on either side of the resonant lock-on region, and thus reduce the degree of

asymmetric distribution about fe=f0 ¼ 1:0:
For the lowest Reynolds number (152), the sidewise expansion is mild at all excitation amplitudes employed, and the

distribution of resonant lock-on region is only slightly asymmetric about fe=f0 ¼ 1:0: At this Reynolds number, the self-

excited oscillation is at its onset stage and the oscillating amplitude of the unstable shear layer at a frequency f0 is

relatively small. Thus, applications of the same excitation amplitude can easily induce the primary resonance and the

quenching mechanism leading to the lock-on flow characteristics. Therefore, at the lowest Reynolds number, the sudden

sidewise expansion of resonant lock-on region is more pronounced and the asymmetric distribution toward the high

frequency is diminished.

In a nonlinear oscillatory system, the onset of a sub-harmonic lock-on region is caused by the nonlinear interaction

between the excitation component (fe) and the natural instability component (f0) of the cavity shear layer. At the lowest

Reynolds number, the oscillating amplitude of the unstable shear layer is small relative to that of the external excitation.

Applications of the same excitation amplitudes can easily induce the quenching mechanism leading to a sub-harmonic

lock-on flow characteristic. Thus, the sub-harmonic lock-on region exists only at the lowest Reynolds number.

Existence of a sub-harmonic lock-on region and very narrow sidewise expansion of the sub-harmonic lock-on region

clearly reveal that the differential equation governing the self-excited oscillation in the cavity flows contains a weak

quadratic nonlinear term.

4. Concluding remarks

Lock-on characteristics of an excited cavity shear layer are studied experimentally in a recirculating water channel.

The LDV system and the laser sheet technique are employed to perform the quantitative velocity measurements and the

qualitative flow visualization, respectively. The local periodic excitations are generated by a small circular cylinder,

located very near the upstream edge of cavity, in the form of an oscillatory rotation about its center with various

angular amplitudes (Dy) and frequencies (fe). Under such experimental conditions, the lock-on regions of an excited

cavity shear layer are defined. Also, the Reynolds number effect is investigated.

For all the Reynolds numbers employed herein, the resonant lock-on characteristic of an excited cavity shear layer is

found to be the primary lock-on region within the frequency range fe=f0 ¼ 0:28–2.0. Within the same frequency range,

the frequency bandwidth of the resonant lock-on region indeed increases significantly with increasing excitation

amplitudes for Reynolds numbers 216 and 278, but changes mildly at Reynolds number 152.

The resonant lock-on region is caused by the primary resonance if the excitation frequency (fe) lies in the

neighborhood of fe=f0 ¼ 1: When the excitation amplitudes are large enough and the excitation frequencies (fe) are far

away from the natural instability frequency (f0) of the cavity shear layer, the ‘‘quenching’’ phenomenon may provide

another important mechanism to cause sudden sidewise expansion of the resonant lock-on region.

For Reynolds numbers 216 and 278 and at small excitation amplitudes (Dyp5�), the resonant lock-on region

distributes asymmetrically about fe=f0 ¼ 1:0 and is biased toward the high-frequency side. The unequal excitation

amplitude of tangential velocity about fe=f0 ¼ 1:0 is primarily responsible for the asymmetric distribution of the

resonant lock-on region toward the high-frequency direction. At large excitation amplitudes (Dy > 5�), the sidewise

expansion of the resonant lock-on region is enlarged and the degree of asymmetric distribution is reduced because both

the primary resonance and the quenching mechanisms make contributions.

At the lowest Reynolds number, the oscillating amplitude of the unexcited cavity shear layer is relative small. Thus,

the external excitation at the same amplitude can easily induce both the primary resonance and the quenching

mechanism, leading to the lock-on flow characteristics. Therefore, the sidewise expansion of resonant lock-on region

toward the high-frequency side is more significant at the lowest Reynolds number than at higher ones.

In a nonlinear oscillatory system, the onset of a sub-harmonic lock-on region is caused by the nonlinear interaction

between the excitation component and the natural component of cavity shear layer (Nayfeh and Mook, 1979). At the

lowest Reynolds number (152), the existence of a sub-harmonic lock-on region and a very narrow sidewise expansion

clearly reveal that the differential equation governing the self-excited oscillation within the cavity flows contains weak

quadratic nonlinear term.
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